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Summary

Modeling the joint distribution of a binary trait (disease)
within families is a tedious challenge, owing to the lack
of a general statistical model with desirable properties
such as the multivariate Gaussian model for a quanti-
tative trait. Models have been proposed that either as-
sume the existence of an underlying liability variable,
the reality of which cannot be checked, or provide es-
timates of aggregation parameters that are dependent on
the ordering of family members and on family size. We
describe how a class of copula models for the analysis
of exchangeable categorical data can be incorporated
into a familial framework. In this class of models, the
joint distribution of binary outcomes is characterized by
a function of the given marginals. This function, referred
to as a “copula,” depends on an aggregation parameter
that is weakly dependent on the marginal distributions.
We propose to decompose a nuclear family into two sets
of equicorrelated data (parents and offspring), each of
which is characterized by an aggregation parameter (aFM

and aSS, respectively). The marginal probabilities are
modeled through a logistic representation. The advan-
tage of this model is that it provides estimates of the
aggregation parameters that are independent of family
size and does not require any arbitrary ordering of sibs.
It can be incorporated easily into segregation or com-
bined segregation-linkage analysis and does not require
extensive computer time. As an illustration, we applied
this model to a combined segregation-linkage analysis
of levels of plasma angiotensin I–converting enzyme
(ACE) dichotomized into two classes according to the
median. The conclusions of this analysis were very sim-
ilar to those we had reported in an earlier familial anal-
ysis of quantitative ACE levels.
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Introduction

A large amount of medical research is directed toward
characterization of genes involved in the predisposition
to human diseases. Although considerable progress has
been made for monogenic diseases, the identification of
susceptibility genes for multifactorial diseases still poses
numerous challenges, including the development of new
statistical methodologies. Nonparametric methods have
become increasingly popular for investigation of the ge-
netic basis of multifactorial diseases, because they do
not require the genetic model to be specified. However,
the minimal assumptions made by these methods are at
the expense of a limited power. In the case of a trait that
is influenced by a so-called major gene—that is, a gene
with an effect that is large enough to be distinguished
from other sources of variability—parametric methods
that specify a genetic model are much more powerful
for the detection of genetic effects. These methods in-
clude segregation analysis, LOD-score analysis, and
combined segregation-linkage analysis.

In the case of a quantitative phenotype, parametric
models, in general, are based on the multivariate normal
distribution, for the characterization of the joint distri-
bution of the trait within a family. In the case of a binary
phenotype, such as disease status, there does not exist
a joint distribution with desirable properties similar to
those of the multinormal distribution. Different for-
mulations have been proposed. One assumes the exis-
tence of an underlying liability variable that is distrib-
uted normally, with individuals being affected if their
liability exceeds a threshold, which may depend on co-
variates such as age and sex (Morton and MacLean
1974; Lalouel et al. 1983; Demenais 1991). However,
this liability variable is a theoretical concept, the reality
of which cannot be checked. Regressive logistic models
have been proposed that model the joint distribution of
familial binary traits, by conditioning each individual’s
phenotype on those of preceding relatives (Bonney 1986,
1987). These models require an arbitrary ordering of
family members and, therefore, yield results that are de-
pendent on family size and order. To overcome the prob-
lem of ordering the phenotypes, compound regressive
models have been proposed (Bonney 1992), but their
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practical use has not been demonstrated clearly. Con-
ditional logistic regression models have been developed
that allow specification of the joint distribution of cor-
related outcomes, without the need to order them (Con-
nolly and Liang 1988; Tosteson et al. 1991; Abel et al.
1993). In these models, familial aggregation between
two relatives is expressed in terms of an odds ratio (OR)
conditional on the other family members. Therefore, the
familial aggregation parameters are dependent on the
marginal distributions of the data and on the size of the
families. Moreover, the numerous computer calculations
required by these models have limited their use.

In this article, we present an alternative model for the
analysis of familial binary data that is based on the cop-
ula theory. This model, first proposed by Meester and
MacKay (1994) for the analysis of symmetric correlated
categorical data, was applied here to nuclear families.
In this model, the joint distribution of binary outcomes
is characterized by a function of the given marginals.
This function, referred to as a “copula,” depends on a
parameter that can be interpreted as a term of associ-
ation between outcomes that is weakly dependent on the
marginal parameters. The advantage of this model is that
it does not require any ordering of sibs and provides
estimates of association parameters that are independent
of the size of the families. The model is described in
Methods and is illustrated by a combined segregation-
linkage analysis of high plasma levels of angiotensin
I–converting enzyme (ACE).

Methods

Copula Theory

Let be a cluster of n random variablesy � y , ..., y1 n

with given marginal distribution functions . Sup-F ,..., F1 n

pose we are interested in modeling the joint-distribution
function of y. If the true distribution is unknown, it is
nevertheless possible to construct a joint distribution F
for y that preserves the marginal distribution functions

, by use of the following result.F ,..., F1 n

If C is a distribution function on [0, 1]n, with uniform
univariate marginals, then defines aC[F (y ), ..., F (y )]1 1 n n

joint-distribution function F for y that has the desired
univariate marginals (Schweizer and Sklar 1983). The
function C is called a copula. Note that, if the true joint
distribution is known, there is (in general) a unique cop-
ula function that links it to its marginals. When the true
joint distribution is unknown, the choice of a copula is
not unique, and, consequently, the derived distribution
F is not necessarily the true joint distribution of y.

Several examples of copula functions have been given
by Genest and MacKay (1986) for the bivariate case
( ). Of particular interest is a family of copula func-n � 2
tions known as “Frank’s family,” which was first intro-

duced by Frank (1979) for and was extended byn � 2
S. G. Meester (personal communication) for . It isn 1 2
characterized by the following formulation of F(y):

F(y) � C [F (y ), ..., F (y )]a 1 1 n n

n �aF (y )i ie � 1�1 �a� log 1 � (e � 1)� , (1)a [ ]�a{ }
i�1 e � 1

with

n

lim {C [F (y ), ..., F (y )]} � �F(y ) .a 1 1 n n i i
i�1ar0

From equation (1), this joint distribution for y appears
to be modeled through the given marginals Fi (“mean”
structure) and the dependence structure (“covariance”
structure) characterized by the copula. This copula is a
function of one parameter, a ( ), which has�� ! a ! �
the properties of a within-cluster association parameter
(Genest 1987; Meester and MacKay 1994). Indepen-
dence between the yi’s occurs if and only if , anda � 0
positive and negative within-cluster associations are
characterized by and , respectively. In thea 1 0 a ! 0
context of family data, negative associations are rarely
encountered, although this possibility cannot be ruled
out.

Note that, owing to the expression of the Ca function,
which depends on a single association parameter a, the
copula model described above only applies to equicor-
related (or symmetric) data. Last, since the joint distri-
bution shown in equation (1) has the same form what-
ever the cluster size n, this copula model can easily deal
with varying cluster sizes.

An important feature of this model is that, for con-
tinuous variables, a is an association parameter that has
been shown to be independent of the marginal distri-
butions and that is closely related to the Spearman cor-
relation coefficient rs (Schweizer and Wolff 1981). For
binary variables, such an independence between a and
the marginals is, in general, not true. However, it can
be shown that the relationship between a and the pair-
wise OR between any two binary variables yi and yj,
with marginal probabilities pi and pj, respectively, is as
follows:

P(y � 1, y � 1)P(y � 0, y � 0)i j i jOR �
P(y � 1, y � 0)P(y � 0, y � 1)i j i j

(p � p � 1 � D)(�D)i j� , (2)
(1 � p � D)(1 � p � D)j i

with
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Figure 1 Correspondence between the pairwise OR and copula association parameter a, for two binary variables with common marginal
probabilities .p � p � pi j

�a(1�p ) �a(1�p )i j1 [e � 1][e � 1]
D � log 1 � .

�a{ }a e � 1

By use of equation (2), the correspondence between the
OR and a can be derived for different values of (pi, pj)
(fig. 1). For simplicity, we assumed that .p � p � pi j

When , the correspondence between the OR anda ! 2.5
a appears to be weakly dependent on the common mar-
ginal probability p. For example, values for a of 0.5, 1,
1.5, and 2 would correspond approximately to pairwise
ORs 1.3, 1.6, 2.0, and 2.5, respectively. For higher values
of a, the relationship between the OR and a is no longer
independent of p. However, the range of variation of the
OR, for a given a, remains relatively small (3.4–4.2 for

). A similar pattern was observed when ,a � 3 p ( pi j

with a slightly more pronounced dependency on the
marginal probabilities (data not shown). These results
indicate that a weak dependency between a and the mar-
ginal binary distributions may be expected, as was ob-
served for real data by Meester and MacKay (1994).

Application to Familial Aggregation Analysis of a
Binary Trait

We now consider nuclear families in which a binary
trait (e.g., disease status) is measured. Let y �

be the vector of the trait for the father(y , y , y , ..., y )F M 1 n

(F), the mother (M), and the n children. Similarly, x �
is the familial vector of measured(x , x , x , ..., x )F M 1 n

covariates.
Under the assumption that, conditional on an indi-

vidual’s own covariates, an individual’s status is inde-
pendent of the covariates of the other family members,

the joint probability of the trait, given the covariates,
can be decomposed into two probabilities:

P(y/x) � P(y , y /x , x )F M F M

# P(y , ..., y /y , y , x , ..., x ) .1 n F M 1 n

These two probabilities then can be modeled by two
different Frank’s family copulas, since (yF, yM) and
( ) can each be viewed as a set of equicorrelatedy , ..., y1 n

data. Following S. G. Meester (personal communica-
tion), the joint distribution for parents can be written
as

P(y , y /x , x ) � C [F (y /x ), F (y /x )]F M F M a F F F M M MFM

� C [F (y /x ), F (y � 1/x )]a F F F M M MFM

� C [F (y � 1/x ), F (y /x )]a F F F M M MFM

� C [F (y � 1/x ), F (y � 1/x )]a F F F M M MFM

(f�m)� {(�1) C [F (y � f/x ),� � a F F FFM
f�0,1 m�0,1

F (y � m/x )]} ,M M M

(3)

where aFM is the parameter of association between the
father and mother and where FF and FM are the marginal
distribution functions characterizing each parent’s
status. These distribution functions can be modeled by
use of a logistic representation; for example,
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0 if U � �1
l�bxFF (U/x ) � 1/(1 � e ) if U � 0 ,F F {1 if U � 1

where l is the baseline parameter and b is the vector of
marginal regression parameters of covariates, which, for
ease of notation, are assumed to be identical for all clas-
ses of individuals. Similarly, assuming that sibs are equi-
correlated, can be expressedP(y , ..., y /y , y , x , ..., x )1 n F M 1 n

as follows:

nS ji�1 i, ..., (�1) C [F (y � j /x , y , y ), ...,� � { a 1 1 1 1 F MSS
j �0,1 j �0,11 n

F (y � j /x , y , y )] , (4)}n n n n F M

where aSS is the parameter of association between sibs
and where Fi is the marginal distribution function char-
acterizing the ith offspring’s status. As for the parents,
a logistic representation can be used to describe the mar-
ginal distribution function:

F(U/x , y , y ) �i i F M

0 if U � �1
l�bx �g y �g yi FO F MO M1/(1 � e ) if U � 0 ,{1 if U � 1

where gFO and gMO are the regression coefficients, for
the parents’ phenotypes, that characterize the familial
aggregation between parents and offspring. According
to this model, exp(gFO) and exp(gMO) are the classic pair-
wise ORs measuring the parent-offspring aggregation.
In this formulation, aSS characterizes the residual aggre-
gation between sibs, after controlling for parent-off-
spring dependency. This sib-sib residual aggregation can
be due to genes that have nonadditive effects and/or to
shared environmental factors specific to the offspring.
An estimate of the crude aggregation between sibs can
be obtained by setting the g coefficients equal to 0 in
the logistic model. Finally, note that, since in this model
the sibship is considered as a set of equicorrelated data,
it is not possible to distinguish brother-brother, brother-
sister, and sister-sister aggregations.

Extension to Segregation and Combined Segregation-
Linkage Analyses of a Binary Trait

Let and , mM, m1, ...,g � (g , g , g , ..., g ) m � (mF M 1 n F

mn) be the familial genotypic vectors at an unobserved
major locus influencing the trait and at a measured
marker locus, respectively. The joint likelihood of the
observations can be written as P(y/x, g)P(g)L(y/x) � � g

for segregation analysis and as P(y/x,L(y/x, m) � � g

g)P(m/g)P(g) for segregation-linkage analysis, where the
summation is over all the possible unobserved genotypes

at the major locus. The first term of the likelihood func-
tion is the penetrance, which can be decomposed into
two probabilities:

P(y/x, g) � P(y , y /x , x , g , g )F M F M F M

# P(y , ..., y /y , y , x , ..., x , g , ..., g ) .1 n F M 1 n 1 n

These two probabilities are modeled by two different
Frank’s family copulas, as in equations (3) and (4). Gen-
otypic effects at the major locus are defined, in a logistic
scale, as the differences between the genotype-specific
baseline parameters lg. The association parameters now
describe the residual familial aggregation, after control-
ling for the major-gene effects. The genotypic probabil-
ities are written as usually in segregation analysis or
segregation-linkage analysis.

Ascertainment Correction

In segregation or segregation-linkage analysis of a bi-
nary trait, families usually are selected through a par-
ticular scheme of ascertainment, not randomly. The like-
lihood therefore must be modified to incorporate an
ascertainment correction, as follows:

L(y/x, m)P(A/y, x, m)
L(y/x, m, A) � ,

[ ]� L(y/x, m)P(A/y, x, m)y

where A is the ascertainment event. Several formulations
for ascertainment corrections can be found in the reports
by Cannings and Thompson (1979) and Elston and So-
bel (1979).

Estimation of Parameters and Hypothesis Testing

Estimation of parameters is performed by maximi-
zation of the likelihood of the sample. Hypothesis testing
is performed by means of the likelihood-ratio criterion.
We developed our own program and linked it to the
GEMINI maximization procedure (Lalouel 1981).

Results

Using combined segregation-linkage analysis, we had
shown previously that quantitative plasma ACE levels
were under the control of a major gene in complete
linkage disequilibrium with a measured insertion (I)/de-
letion (D) polymorphism at the ACE locus (Tiret et al.
1992). As an illustration of the model proposed above,
we performed a new segregation-linkage analysis of ACE
levels, dichotomized for the purpose of application into
two classes according to the median of the distribution.

The sample included 95 nuclear families that had vol-
unteered for a free health examination and that com-
prised both natural parents ( ) and at least twon � 190
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Table 1

Mean Values (SDs) and Ranges for Age and for Quantitative Plasma-ACE Levels, in
the Study Population

Fathers
( )n � 95

Mothers
( )n � 95

Sons
( )n � 120

Daughters
( )n � 82

Age (in years):
Mean (SD) 41.4 (4.2) 39.4 (3.5) 14.3 (3.0) 14.4 (3.2)
Range 32–58 32–49 7–20 7–21

Plasma ACE (in IU/liter):
Mean (SD) 89.5 (29.5) 84.4 (27.5) 125.6 (45.1) 106.7 (39.4)
Range 31–150 28–165 43–252 27–239

offspring aged �9 years ( ). Since the relationn � 222
between quantitative ACE levels and age of offspring
had been shown to be nonlinear, adjustment for age and
age2 was made prior to analysis, separately for sons and
daughters. For parents, no adjustment for age was nec-
essary. A binary variable then was defined by dichoto-
mizing the age- and sex-adjusted ACE distribution, ac-
cording to the median.

The segregation-linkage analysis assumed a marker
I/D in linkage disequilibrium with a putative functional
polymorphism at the ACE locus, which had two alleles,
a and A, with A associated with high ACE levels. The
parameters of the model were the marker allele I fre-
quency; the frequencies of major allele a conditional on
I (pI) and D (pD); the major genotype effects d �Aa

and ; and the four residual as-l � l d � l � lAa aa AA AA aa

sociation parameters (aFM, gFO, gMO, and aSS). Since the
families were selected randomly, no correction for as-
certainment was performed.

The mean ages and quantitative plasma ACE levels
for the sample are reported in table 1. The I/D poly-
morphism was in Hardy-Weinberg equilibrium, and al-
lele I frequency was Our earlier report (Tiret.43 � .02.
et al. 1992) had shown that there was no correlation
of quantitative ACE levels in parents and that the par-
ent-offspring and the sib-sib correlations were not sig-
nificantly different ( for the commonr � .24 � .04
correlation).

Results of the familial analysis of the binary phenotype
are reported in table 2. The model including familial
aggregation (model 1) was better supported than model
0, which assumed no familial aggregation ( ,2x � 15.78
with 4 df; ). The association between spousesP ! .005
was not significantly different from 0 ( , with2x � 0.09
1 df). The father-offspring and mother-offspring asso-
ciation parameters were not different ( , with2x � 0.04
1 df). The crude aggregation between sibs, estimated
from a model that set the g coefficients equal to 0 (data
not shown), was significantly different from 0 (a �SS

). This estimate would approximately cor-1.86 � 0.86
respond to a sib-sib OR of 2.40. After controlling for
the parent-offspring dependency, the residual aggrega-

tion between sibs was no longer significant (a �SS

; , with 1 df). The most parsi-21.44 � 0.88 x � 2.97
monious model of familial aggregation (model 2) indi-
cated, for high ACE levels, a common parent-offspring
OR of 2.10 (95% confidence interval [CI] 1.38–3.20)
and no residual aggregation between sibs, after account-
ing for the parent-offspring dependency.

Model 3, which assumed a major gene in complete
association with the I/D polymorphism, allowed us to
test the effects associated with the I/D polymorphism.
These effects were highly significant ( , with2x � 64.70
2 df; ). The genotype effects were compatibleP ! .0001
with an additive effect of the D allele (model 4 vs. model
3; , with 1 df). When an additive model was2x � 1.28
assumed, the D allele was associated with an OR of 3.68
(95% CI 2.59–5.23) for high ACE levels. After con-
trolling for the effects of the I/D polymorphism, the par-
ent-offspring aggregation was no longer significant
(model 5 vs. model 4; , with 1 df). Because of2x � 3.14
convergence problems, we were unable to estimate pI

and pD simultaneously. Model 6, which relaxed the con-
straint , was not better supported than model 5p � 1I

( , with 1 df). On the other hand, model 7,2x � 0.94
which relaxed the constraint , had a better like-p � 0D

lihood than model 5 ( , with 1 df; ).2x � 5.94 P ! .02
Finally, model 8, which assumed the existence of a major
gene in linkage equilibrium with the I/D polymorphism
( ), had a worse likelihood than model 7, withp � pI D

the same df.
The most parsimonious model, therefore, was a model

specifying a major gene in complete linkage disequilib-
rium with the I/D polymorphism, since the A allele as-
sociated with high ACE levels was always carried by
marker allele D. In this model, the frequency of major
allele A was , and this allele was associated.36 � .07
with an OR of 12.62 (95% CI 4.27–37.29) for high
ACE levels, compared with the OR of 3.68 associated
with the D allele. The lack of residual familial aggre-
gation after controlling for the major-gene effect sug-
gested that the segregation of this major gene was the
only source of familial resemblance. The inferences made
from this analysis were very similar to those obtained
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Table 2

Familial Analysis of Dichotomized ACE Levels

Parameter Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Frequency of marker allele I .434 .434 .434 .434 .434 .434 .434 .434
Frequency of major gene a:

Conditional on allele I (pI) [1] [1] [1] [1] [1] .818 [1] .745
Conditional on allele D (pD) [0] [0] [0] [0] [0] [0] .356 (.745)

Major genotype effect:
dAa [0] [0] 1.642 1.303 1.359 1.721 2.535 3.051
dAA [0] [0] 2.742 (2.606) (2.718) (2.442) (5.070) (6.102)

Residual aggregation:
Spouses (aFM) �.260 [0] [0] [0] [0] [0] [0] [0]
Father-offspring (gFO) .704 .741 .403 .415 [0] [0] [0] [0]
Mother-offspring (gMO) .795 [.741] [.403] [.415] [0] [0] [0] [0]
Residual sib-sib (aSS)

a 1.436 [0] [0] [0] [0] [0] [0] [0]
�LogeL 577.23 578.80 546.45 547.09 548.66 548.19 545.69 576.52
Alternate model 0b 1 2 3 4 5 5 )
df 4 3 2 1 1 1 1 )
x2 15.78 3.14 64.70 1.28 3.14 .94 5.94 )

NOTE.—Square brackets indicate that the parameter is fixed to the value given, and parentheses indicate that the parameter is constrained.
a Aggregation when controlling for parent-offspring dependency.
b Model 0 is without familial aggregation

from the analysis of quantitative ACE levels (Tiret et al.
1992).

Discussion

We have described an extension of the Frank’s family
copula model proposed by Meester and MacKay (1994)
for correlated categorical data. The model of Meester
and MacKay (1994) applies to equicorrelated data, and
the correlation between binary outcomes is expressed
through a single association parameter.

Since a nuclear family cannot be viewed as a set of
symmetric data, we proposed to decompose the family
into two sets of equicorrelated data (parents and off-
spring), each characterized by a within-cluster associa-
tion parameter (aFM and aSS, respectively). The depen-
dency between parents and offspring was modeled
through regression logistic coefficients gFO and gMO. This
formulation has the advantage that it does not require
an arbitrary ordering of sibs, as do regressive models
(Bonney 1986, 1987). However, it does require an or-
dering between parents and offspring, but this ordering
appears to be quite natural. Another advantage of this
formulation is that association parameters are indepen-
dent of the marginal distributions—in particular, the size
of the families—unlike the conditional logistic models
proposed by Connolly and Liang (1988) and Abel et al.
(1993).

Some limitations of this model should be discussed:
One is the absence of symmetry between the a’s and the
g’s, which precludes testing of their equality. However,
both parameters can be easily interpreted in terms of the

classic OR, making comparison of their magnitudes pos-
sible. Another limitation of this model is that, owing to
the implicit symmetric nature of the data within a cop-
ula, the aSS parameter cannot be split to allow for sex
difference between sibs. Last, extension to multigener-
ational pedigrees, although possible, would rapidly be-
come complex, since each class of relatives would have
to be considered as a distinct copula. However, the prob-
lem of extension to pedigrees is not specific to this mod-
eling and arises with most other models for binary data.
In our view, the model proposed here mainly applies to
the study of multifactorial traits, characterized by fre-
quent genes and strong environmental correlations,
which, in general, are investigated through samples of
nuclear families rather than through extended pedigrees.

If one’s main interest is to assess familial aggregation
without performing segregation analysis, the copula
model probably is not the most appropriate model, ow-
ing to the limitations mentioned above. The estimating
equations (EE) technique, which allows specification of
familial aggregation through the marginal OR, by only
modeling the first- and second-order moments, is better
suited. In addition, the EE method can accommodate
any kind of familial dependency, whereas the proposed
copula model assumes an equicorrelation between sibs.
Several EE applications have been proposed for the anal-
ysis of correlated binary data (Liang and Beaty 1991;
Zhao and Le Marchand 1992; Hsu and Zhao 1996;
Trégouët et al. 1997). However, if the EE technique has
proved to be very efficient for the analysis of correlated
data, the numerous calculations required in segregation
analysis cause its application to be less practical for
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this type of analysis (Whittemore and Gong 1994),
and a maximum-likelihood method seems to be more
appropriate.

A major interest in the copula model is its computer
tractability, which makes it more attractive than other,
previously proposed models (Bonney 1992; Abel et al.
1993) for segregation or segregation-linkage analysis.
Further studies are needed to explore the properties of
this copula model. In particular, there is a close con-
nection between bivariate copulas (Genest and MacKay
1986) and the method of modeling association in bi-
variate frailty models for survival data (Oakes 1989).
This connection suggests that incorporation of a copula
model in survival analysis methods for familial diseases
with variable age at onset should be possible (Abel and
Bonney 1990). Several other copulas have been de-
scribed (Clayton 1978; Hougaard 1986), and investi-
gation of how they can be incorporated into a familial
analysis framework would be interesting. Simulation
studies are also required, to compare this copula model
to other models (Bonney 1992; Abel et al. 1993) in terms
of power to detect a major gene and type I error. How-
ever, it should be kept in mind that segregation and
segregation-linkage analyses have a relatively low power
to detect susceptibility genes that have a modest effect,
whatever the parameterization used for the familial
aggregation.

We applied the copula model to real data on high ACE
levels and compared the results with those previously
obtained from a combined segregation-linkage analysis
of quantitative ACE levels (Tiret et al. 1992). The main
conclusions of both analyses were very similar, namely,
the existence of a major gene in complete linkage dis-
equilibrium with the I/D polymorphism and strongly in-
fluencing the “risk” of having high ACE levels. As in
our earlier analysis (Tiret et al. 1992), there was no
aggregation of the trait between spouses, and the inter-
pretation that the aggregation between sibs was no
longer significant after the parent-offspring dependency
was considered is consistent with the equal parent-off-
spring and sib-sib correlations observed in the analysis
of quantitative ACE levels. This result is also consistent
with similar magnitudes in the parent-offspring and the
crude sib-sib ORs (2.10 and 2.40, respectively). This
pattern of familial resemblance is compatible with the
absence of shared environmental factors specific to off-
spring that influence ACE levels. It also suggested the
lack of dominance genetic variance, a feature that was
confirmed by the additive allele effects inferred at the
major locus and that accounted for the entire heritability.
In our previous analysis, the residual familial resem-
blance for quantitative ACE levels was still significant
after controlling for the I/D polymorphism and disap-
peared only after a major-gene effect was introduced.
This slight difference from the analysis described here

probably can be explained by a loss of power consecutive
to the truncation of the continuous phenotype. This loss
of power can be assessed roughly by comparison of the
x2 values for the testing of the same specific hypotheses
in both analyses. For example, in the analysis of quan-
titative ACE levels, the x2 value for the testing of residual
familial resemblance after controlling for the I/D poly-
morphism was 9.39 (1 df), and that for the testing of
the existence of a major gene in complete linkage dis-
equilibrium with the I/D polymorphism was 10.48 (1
df). In the analysis of dichotomized ACE levels, the cor-
responding x2 values were 3.14 and 5.94, respectively,
with the same number of df, indicating a clear loss of
power.

In conclusion, this copula model based on Frank’s
family provides a flexible model for the analysis of fa-
milial binary data. Its main attractive features are that
the association parameter is independent of marginal
distributions, that varying cluster sizes can be accom-
modated easily, and that the technique is computation-
ally tractable.

Acknowledgments

We wish to deeply thank S. G. Meester for providing his
unpublished Ph.D. thesis. We also are deeply grateful to two
anonymous reviewers for providing helpful suggestions on ear-
lier drafts of this article.

References

Abel L, Bonney GE (1990) A time-dependent logistic hazard
function for modeling variable age of onset in analysis of
familial diseases. Genet Epidemiol 7:391–407

Abel L, Golmard JL, Mallet A (1993) An autologistic model
for the genetic analysis of familial binary data. Am J Hum
Genet 53:894–907

Bonney GE (1986) Regressive logistic models for familial dis-
ease. Biometrics 42:611–625

——— (1987) Logistic regression for dependent binary ob-
servations. Biometrics 43:951–973

——— (1992) Compound regressive models for family data.
Hum Hered 42:28–41

Cannings C, Thompson E (1979) Ascertainment in the se-
quential sampling of pedigrees. Clin Genet 12:208

Clayton DG (1978) A model for association in bivariate life
tables and its application in epidemiological studies of fa-
milial tendency in chronic disease incidence. Biometrika 65:
141–151

Connolly M, Liang K (1988) Conditional logistic regression
models for correlated binary data. Biometrika 75:501–506

Demenais F (1991) Regressive logistic models for familial dis-
eases: a formulation assuming an underlying liability model.
Am J Hum Genet 49:773–785

Elston R, Sobel E (1979) Sampling considerations in the gath-
ering and analysis of pedigree data. Am J Hum Genet 31:
62–69



Trégouët et al.: Copula Model for Familial Analysis of Binary Trait 893

Frank M (1979) On the simultaneous associativity of F(x, y)
and . Aequationes Math 19:194–226x � y � F(x,y)

Genest C (1987) Frank’s family of bivariate distributions.
Biometrika 74:549–555

Genest C, MacKay J (1986) The joy of copulas: bivariate dis-
tributions with uniform marginals. Am Stat 40:280–283

Hougaard P (1986) A class of multivariate failure time dis-
tributions. Biometrika 73:671–678

Hsu L, Zhao LP (1996) Assessing familial aggregation of age
at onset, by using estimating equations, with application to
breast cancer. Am J Hum Genet 58:1057–1071

Lalouel J (1981) GEMINI: a computer program for optimi-
zation of general nonlinear functions. Tech rep 14, Depart-
ment of Medical Biophysics and Computing, University of
Utah, Salt Lake City

Lalouel J, Rao D, Morton N, Elston R (1983) A unified model
for complex segregation analysis. Am J Hum Genet 35:
816–826

Liang KY, Beaty TH (1991) Measuring familial aggregation
by using odds ratio regression models. Genet Epidemiol 8:
361–370

Meester SG, MacKay J (1994) A parametric model for cluster
correlated categorical data. Biometrics 50:954–963

Morton N, MacLean C (1974) Analysis of family resemblance.
III. Complex segregation analysis of quantitative traits. Am
J Hum Genet 26:489–503

Oakes D (1989) Bivariate survival models induced by frailties.
J Am Stat Assoc 84:487–493

Schweizer B, Sklar A (1983) Probabilistic metric spaces. North
Holland, New York

Schweizer B, Wolff EF (1981) On parametric measures of de-
pendence for random variables. Ann Stat 9:879–885

Tiret L, Rigat B, Visvikis S, Breda C, Corvol P, Cambien F,
Soubrier F (1992) Evidence, from combined segregation
and linkage analysis, that a variant of the angiotensin
I–converting enzyme (ACE) gene controls plasma ACE lev-
els. Am J Hum Genet 51:197–205

Tosteson T, Rosner B, Redline S (1991) Logistic regression for
clustered binary data in proband studies with application
to familial aggregation of sleep disorders. Biometrics 47:
1257–1265
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